论文标题
连续变化的随机量子网络中的纠缠形成
Entanglement formation in continuous-variable random quantum networks
论文作者
论文摘要
纠缠不仅对于理解多体系统的基本属性很重要,而且对于实现实际信息处理任务中量子优势的关键资源也很重要。虽然先前的纠缠形成和网络关注离散可变系统的作品,但光---作为网络中量子信息的唯一旅行载体 - - - - 因此需要一个连续变化的描述。在这项工作中,我们将研究扩展到连续可变的量子网络。通过将任意网络上的合奏平均纠缠动态映射到图上的随机行程过程中,我们可以精确地求解纠缠动力学并揭示独特的现象。我们确定挤压是纠缠产生的来源,它触发了用抛物线光锥体纠缠的扩散传播。纠缠分布直接连接到随机步行的概率分布,而争夺时间由随机行走的混合时间确定。两分纠缠的动力学取决于两人的边界。引入了基于感应任务的优势的多部分纠缠的作战见证人,以表征多方纠缠的增长。尽管纠缠动力学的非线性性质,但当挤压器在时空稀疏时,就可以预测纠缠生长中令人惊讶的线性叠加定律。我们还为平衡纠缠分布(页面曲线)提供了精确的解决方案,包括其波动,并发现各种形状取决于平均挤压密度和强度。
Entanglement is not only important for understanding the fundamental properties of many-body systems, but also the crucial resource enabling quantum advantages in practical information processing tasks. While previous works on entanglement formation and networking focus on discrete-variable systems, light---as the only travelling carrier of quantum information in a network---is bosonic and thus requires a continuous-variable description in general. In this work, we extend the study to continuous-variable quantum networks. By mapping the ensemble-averaged entanglement dynamics on an arbitrary network to a random-walk process on a graph, we are able to exactly solve the entanglement dynamics and reveal unique phenomena. We identify squeezing as the source of entanglement generation, which triggers a diffusive spread of entanglement with a parabolic light cone. The entanglement distribution is directly connected to the probability distribution of the random walk, while the scrambling time is determined by the mixing time of the random walk. The dynamics of bipartite entanglement is determined by the boundary of the bipartition; An operational witness of multipartite entanglement, based on advantages in sensing tasks, is introduced to characterize the multipartite entanglement growth. A surprising linear superposition law in the entanglement growth is predicted by the theory and numerically verified, when the squeezers are sparse in space-time, despite the nonlinear nature of the entanglement dynamics. We also give exact solution to the equilibrium entanglement distribution (Page curves), including its fluctuations, and found various shapes dependent on the average squeezing density and strength.