论文标题

带有零尺寸的后代的顶点顶点

Capped vertex with descendants for zero dimensional $A_{\infty}$ quiver varieties

论文作者

Dinkins, Hunter, Smirnov, Andrey

论文摘要

在本文中,我们研究了与某些零维型$ a $ nakajima Quiver品种相关的限制顶点函数。将后代插入到顶点函数中的插入可以由MacDonald运算符表示,这会导致限制的顶点函数的显式组合公式。 我们确定了顶点函数的单片,并表明它与符号双重二元品种的椭圆形R-Matrix一致。我们将结果应用于由任意稳定性条件形成的箭量品种上的顶点函数和重言式束的特征。

In this paper, we study the capped vertex functions associated to certain zero-dimensional type-$A$ Nakajima quiver varieties. The insertion of descendants into the vertex functions can be expressed by the Macdonald operators, which leads to explicit combinatorial formulas for the capped vertex functions. We determine the monodromy of the vertex functions and show that it coincides with the elliptic R-matrix of symplectic dual variety. We apply our results to give the vertex functions and the characters of the tautological bundles on the quiver varieties formed from arbitrary stability conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源