论文标题

21世纪的天体物理学统计和计算挑战

21st Century Statistical and Computational Challenges in Astrophysics

论文作者

Feigelson, Eric D., de Souza, Rafael S., Ishida, Emille E. O., Babu, Gutti Jogesh

论文摘要

现代天文学一直在迅速提高我们更深入宇宙的能力,从而获得巨大的宇宙种群样本。从这些数据集中获得天体物理见解需要广泛的复杂统计和机器学习方法。宇宙学中的长期问题包括星系聚类的表征以及对光度颜色的星系距离的估计。贝叶斯的推论是将天文数据与非线性天体物理模型联系起来的核心,解决了太阳能物理学,星形簇的特性和系外行星系统的问题。无似然方法的重要性正在增长。需要检测复杂噪声中的微弱信号以在恒星中找到周期性行为并检测爆炸性引力波事件。开放性问题涉及异质分析误差的处理,并了解表征天体物理系统的概率分布。在研究项目的设计和分析阶段,Astrostatistics领域需要增加与统计学家的合作,并共同开发新的统计方法。他们将共同将更多的天体物理见解与天文学人群和宇宙本身一起。

Modern astronomy has been rapidly increasing our ability to see deeper into the universe, acquiring enormous samples of cosmic populations. Gaining astrophysical insights from these datasets requires a wide range of sophisticated statistical and machine learning methods. Long-standing problems in cosmology include characterization of galaxy clustering and estimation of galaxy distances from photometric colors. Bayesian inference, central to linking astronomical data to nonlinear astrophysical models, addresses problems in solar physics, properties of star clusters, and exoplanet systems. Likelihood-free methods are growing in importance. Detection of faint signals in complicated noise is needed to find periodic behaviors in stars and detect explosive gravitational wave events. Open issues concern treatment of heteroscedastic measurement errors and understanding probability distributions characterizing astrophysical systems. The field of astrostatistics needs increased collaboration with statisticians in the design and analysis stages of research projects, and to jointly develop new statistical methodologies. Together, they will draw more astrophysical insights into astronomical populations and the cosmos itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源