论文标题

机器学习形成金属间的焓

Machine learning formation enthalpies of intermetallics

论文作者

Zhang, Zhaohan, Li, Mu, Flores, Katharine, Mishra, Rohan

论文摘要

开发快速准确的方法来发现金属间化合物与合金设计有关。尽管基于密度功能理论(DFT)的方法通过可快速访问稳定的金属间质量的能量和性能来加速二元和三元合金的设计,但它们不适合快速筛选宽敞的多元元素合金(MPEAS)的多元素元素合金的巨大组合空间。在这里,提出了一个机器学习模型,以预测二进制金属层的形成焓,并用于识别新的焓。该模型使用易于访问的元素属性作为描述符,并且在预测材料项目数据库中报道的稳定二进制金属间质学的形成焓中,具有0.025 eV/原子的平均绝对误差(MAE)。该模型进一步预测,在112个二元合金系统中形成稳定的金属间数,这些系统在材料项目数据库中没有任何稳定的金属间数。 DFT计算证实了该模型NBV2鉴定的稳定的金属间层中的一个,即在凸面上。接受二进制金属间学训练的模型还可以预测具有与DFT相似的准确性的三元间金属,这表明它可以扩展以识别可能在MPEAS中形成的构图复杂的金属层。

Developing fast and accurate methods to discover intermetallic compounds is relevant for alloy design. While density-functional-theory (DFT)-based methods have accelerated design of binary and ternary alloys by providing rapid access to the energy and properties of the stable intermetallics, they are not amenable for rapidly screening the vast combinatorial space of multi-principal element alloys (MPEAs). Here, a machine-learning model is presented for predicting the formation enthalpy of binary intermetallics and used to identify new ones. The model uses easily accessible elemental properties as descriptors and has a mean absolute error (MAE) of 0.025 eV/atom in predicting the formation enthalpy of stable binary intermetallics reported in the Materials Project database. The model further predicts stable intermetallics to form in 112 binary alloy systems that do not have any stable intermetallics reported in the Materials Project database. DFT calculations confirm one such stable intermetallic identified by the model, NbV2 to be on the convex hull. The model trained with binary intermetallics can also predict ternary intermetallics with similar accuracy as DFT, which suggests that it could be extended to identify compositionally complex intermetallics that may form in MPEAs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源