论文标题

3D-OGSE:在未知的3-D环境中使用广义形状扩展的在线安全轨迹生成

3D-OGSE: Online Safe and Smooth Trajectory Generation using Generalized Shape Expansion in Unknown 3-D Environments

论文作者

Zinage, Vrushabh, Arul, Senthil Hariharan, Manocha, Dinesh, Ghosh, Satadal

论文摘要

在本文中,我们提出了一种在线运动计划算法(3D-OGSE),用于在未知的障碍物杂乱无章的3-D环境中生成平滑,无碰撞的轨迹。在每个计划迭代中,我们的方法构建了一个安全区域,称为“广义形状”,该迭代代表基于本地感兴趣的环境信息的无障碍区域。通过广义形状的采样点计算无碰撞路径,并用于通过最小化快照来生成光滑的,时间参数化的轨迹。生成的轨迹被限制为位于广义形状内,这确保了无障碍物空间中的代理操作。当代理在计划迭代中达到“传感形状”的边界时,通过退缩的地平线计划机制触发了重新计划,该机制也可以初始化下一个计划迭代。提供了整个环境中概率完整性和完全无碰撞轨迹产生的理论保证。我们评估了对具有多种障碍物的复杂3-D环境进行仿真的建议方法。我们观察到,每个重新计划计算都在Intel Core i5-8500 3.0 GHz CPU的单个线程上采用$ \ sim $ 1.4毫秒。此外,发现我们的方法的执行速度比几种现有算法快4-10倍。在诸如狭窄段落之类的复杂场景的模拟中,我们也观察到不太保守的行为。

In this paper, we present an online motion planning algorithm (3D-OGSE) for generating smooth, collision-free trajectories over multiple planning iterations for 3-D agents operating in an unknown obstacle-cluttered 3-D environment. Our approach constructs a safe-region, termed 'generalized shape', at each planning iteration, which represents the obstacle-free region based on locally-sensed environment information. A collision-free path is computed by sampling points in the generalized shape and is used to generate a smooth, time-parametrized trajectory by minimizing snap. The generated trajectories are constrained to lie within the generalized shape, which ensures the agent maneuvers in the locally obstacle-free space. As the agent reaches boundary of 'sensing shape' in a planning iteration, a re-plan is triggered by receding horizon planning mechanism that also enables initialization of the next planning iteration. Theoretical guarantee of probabilistic completeness over the entire environment and of completely collision-free trajectory generation is provided. We evaluate the proposed method in simulation on complex 3-D environments with varied obstacle-densities. We observe that each re-planing computation takes $\sim$1.4 milliseconds on a single thread of an Intel Core i5-8500 3.0 GHz CPU. In addition, our method is found to perform 4-10 times faster than several existing algorithms. In simulation over complex scenarios such as narrow passages also we observe less conservative behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源