论文标题

自动扫:从一张照片中恢复3D可编辑对象

AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph

论文作者

Chen, Xin, Li, Yuwei, Luo, Xi, Shao, Tianjia, Yu, Jingyi, Zhou, Kun, Zheng, Youyi

论文摘要

本文提出了一个全自动框架,用于直接从一张照片中提取可编辑的3D对象。与以前的方法恢复深度图,点云或网格表面不同,我们旨在恢复具有语义零件的3D对象,并且可以直接进行编辑。我们的工作基于这样的假设,即大多数人为物体都是由零件组成的,这些部分可以由广义原始物很好地表示。我们的工作试图恢复两种类型的原始物体,即广义的立方体和广义圆柱体。为此,我们构建了一个新颖的实例感知分段网络,以进行准确的零件分离。我们的Geonet输出了一组标记为轮廓和物体的光滑零件层面掩模。然后,在关键阶段,我们同时识别轮廓与体形关系,并通过沿其身体轮廓扫描公认的轮廓并共同优化几何形状,以与回收的面具保持一致。定性和定量实验表明,在实例分割和3D重建中,我们的算法可以恢复高质量的3D模型,并且胜过现有方法。 Autosweep的数据集和代码可在https://chenxin.tech/autosweep.html上找到。

This paper presents a fully automatic framework for extracting editable 3D objects directly from a single photograph. Unlike previous methods which recover either depth maps, point clouds, or mesh surfaces, we aim to recover 3D objects with semantic parts and can be directly edited. We base our work on the assumption that most human-made objects are constituted by parts and these parts can be well represented by generalized primitives. Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders. To this end, we build a novel instance-aware segmentation network for accurate part separation. Our GeoNet outputs a set of smooth part-level masks labeled as profiles and bodies. Then in a key stage, we simultaneously identify profile-body relations and recover 3D parts by sweeping the recognized profile along their body contour and jointly optimize the geometry to align with the recovered masks. Qualitative and quantitative experiments show that our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction. The dataset and code of AutoSweep are available at https://chenxin.tech/AutoSweep.html.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源