论文标题
超临界liouville的紧密度第一通道渗透
Tightness of supercritical Liouville first passage percolation
论文作者
论文摘要
liouville的第一次通道渗透(LFPP)带有参数$ξ> 0 $是随机距离函数的家族$ \ \ {d_h^^^ε\} _ {ε> 0} $,通过集成$ e^{ξh_ε} $的集成$ H___ $ for $h_ε$ for $ε> 0的平面$ Previous work by Ding-Dubédat-Dunlap-Falconet and Gwynne-Miller has shown that there is a critical value $ξ_{\mathrm{crit}} > 0$ such that for $ξ< ξ_{\mathrm{crit}}$, LFPP converges under appropriate re-scaling to a random metric on the plane which induces the same topology as the欧几里得公制(所谓的$γ$ - \ emph {liouville Quantum Gravity Metric}对于$γ=γ(ξ)\ in(0,2)$)。 我们表明,对于所有$ξ> 0 $,LFPP指标相对于较低的半连续功能的拓扑密集。对于$ξ>ξ_ {\ mathrm {crit}} $,每一个可能的后续限制$ d_h $都是飞机上的指标,它可以\ emph {not}诱导欧几里得拓扑:而是诱导无数的,lebesgue sopte $ z $ z $ z $ z \ d_对于\ Mathbb c \ setMinus \ {z \} $中的每一个$ w \。我们预计这些随后的限制指标与liouville量子重力有关,其中中央费用为$(1,25)$。
Liouville first passage percolation (LFPP) with parameter $ξ>0$ is the family of random distance functions $\{D_h^ε\}_{ε>0}$ on the plane obtained by integrating $e^{ξh_ε}$ along paths, where $h_ε$ for $ε>0$ is a smooth mollification of the planar Gaussian free field. Previous work by Ding-Dubédat-Dunlap-Falconet and Gwynne-Miller has shown that there is a critical value $ξ_{\mathrm{crit}} > 0$ such that for $ξ< ξ_{\mathrm{crit}}$, LFPP converges under appropriate re-scaling to a random metric on the plane which induces the same topology as the Euclidean metric (the so-called $γ$-\emph{Liouville quantum gravity metric} for $γ= γ(ξ)\in (0,2)$). We show that for all $ξ> 0$, the LFPP metrics are tight with respect to the topology on lower semicontinuous functions. For $ξ> ξ_{\mathrm{crit}}$, every possible subsequential limit $D_h$ is a metric on the plane which does \emph{not} induce the Euclidean topology: rather, there is an uncountable, dense, Lebesgue measure-zero set of points $z\in\mathbb C $ such that $D_h(z,w) = \infty$ for every $w\in\mathbb C\setminus \{z\}$. We expect that these subsequential limiting metrics are related to Liouville quantum gravity with matter central charge in $(1,25)$.