论文标题

使用基于树的合奏的旅行时间预测

Travel Time Prediction using Tree-Based Ensembles

论文作者

Huang, He, Pouls, Martin, Meyer, Anne, Pauly, Markus

论文摘要

在本文中,我们考虑在城市场景中预测两个任意点之间的旅行时间的任务。我们从两个时间的角度看待这个问题:长期预测,地平线为几天,短期预测,地平线为一个小时。这两种观点都与城市流动性和运输服务背景下的计划任务有关。我们利用基于树的合奏方法,我们在纽约市的出租车旅行记录数据集中进行训练和评估。通过广泛的数据分析,我们确定相关的时间和空间特征。我们还根据天气和路由数据来设计其他功能。后者是通过在道路网络上运行的路由求解器获得的。计算结果表明,此路由数据的添加可能对模型性能有益。此外,使用不同的模型进行短期和长期预测很有用,因为短期模型更适合反映当前的交通状况。实际上,我们表明只有很少的培训数据就可以获得准确的短期预测。

In this paper, we consider the task of predicting travel times between two arbitrary points in an urban scenario. We view this problem from two temporal perspectives: long-term forecasting with a horizon of several days and short-term forecasting with a horizon of one hour. Both of these perspectives are relevant for planning tasks in the context of urban mobility and transportation services. We utilize tree-based ensemble methods that we train and evaluate on a dataset of taxi trip records from New York City. Through extensive data analysis, we identify relevant temporal and spatial features. We also engineer additional features based on weather and routing data. The latter is obtained via a routing solver operating on the road network. The computational results show that the addition of this routing data can be beneficial to the model performance. Moreover, employing different models for short and long-term prediction is useful as short-term models are better suited to mirror current traffic conditions. In fact, we show that accurate short-term predictions may be obtained with only little training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源