论文标题
高收益晶圆尺度制造超损耗的,分散工程的氮化硅光子电路
High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits
论文作者
论文摘要
低损坏的光子集成电路(PIC)和微孔子已经实现了从窄线宽激光器,微波光子学到芯片尺度的光学频率梳子和量子频率转换的新颖应用。将这些结果转化为广泛的技术,以既定的铸造制造业达到超大的光损失至关重要。综合SI3N4光子学的制造的最新进展表明,可以在模具级吞吐量下获得超低,分散工程的微孔子。对于新兴的非线性应用,例如集成的旅行波参数放大器和模式锁定的激光器,需要长达仪表的长度尺度的图片,对当前制造技术尚未满足的产量和性能提出了严格的需求。在这里,我们克服了这些挑战,并展示了一种制造技术,该技术满足了所有这些要求,以晶圆级的产量,性能和长度规模。平均Q因子超过3000万的光子微孔子对应于1.0 dB/m的线性传播损失,在完整的4英寸晶片中获得了1.0 dB/m的线性损失,这是根据对19 ns光子存储时间的数万光谐振和cavity Ringdown的统计分析确定的。该过程在高产的大面积上运行,可实现1米长的螺旋形波,损失2.4 db/m,模具仅为5x5 mm。使用通过KERR非线性进行自校准的调制响应测量,我们透露,令人惊讶的是,我们的SI3N4微孔子的内在吸收限制Q因子超过十亿。将当前的SI3N4光子技术技术转移到标准的商业铸造厂,并使用异质集成技术将其与硅光子学合并,将大大扩大当今集成光子学和种子新应用的范围。
Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these results into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in fabrication of integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators can be attained at die-level throughput. For emerging nonlinear applications such as integrated travelling-wave parametric amplifiers and mode-locked lasers, PICs of length scales of up to a meter are required, placing stringent demands on yield and performance that have not been met with current fabrication techniques. Here we overcome these challenges and demonstrate a fabrication technology which meets all these requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 million, corresponding to a linear propagation loss of 1.0 dB/m, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances and cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB/m loss in dies of only 5x5 mm size. Using a modulation response measurement self-calibrated via the Kerr nonlinearity, we reveal that, strikingly, the intrinsic absorption-limited Q factor of our Si3N4 microresonators exceeds a billion. Transferring the present Si3N4 photonics technology to standard commercial foundries, and merging it with silicon photonics using heterogeneous integration technology, will significantly expand the scope of today's integrated photonics and seed new applications.