论文标题
代数高对称性和分类对称性 - 对称性的全息和纠缠视图
Algebraic higher symmetry and categorical symmetry -- a holographic and entanglement view of symmetry
论文作者
论文摘要
我们介绍了代数高对称性的概念,该概念概述了更高的对称性,并且超出了更高的群体。我们表明,在$ n $维空间中的玻色粒系统中的代数高对称性是由本地融合$ n $类别进行了特征和分类的。我们找到了另一种方法来描述代数高对称性,通过限制在对称的次希尔伯特空间中,在这种对称性下变换都变得微不足道。在这种情况下,代数较高的对称性可以完全表征具有不可变形的引力异常(即在一个更高维度中的拓扑顺序)。因此,我们还将不可变形的引力异常称为强调其与对称性联系的分类对称性。这提供了对称性的全息和纠缠视图。对于具有分类对称性的系统,其间隙状态必须自发地打破一部分(不是全部)对称性,并且具有完整对称性的状态必须是无间隔的。使用这种全息视角,我们获得(1)代数高对称性的测量; (2)代数高对称性的异常分类; (3)只要具有相同的分类对称性,它们具有不同(潜在异常的)代数较高对称性或不同的低能激励集,具有不同的(可能异常的)代数较高对称性或不同的低能激励集; (4)具有分类对称性的骨气/费米神经系统的间隙液相分类为拓扑顺序的间隙边界(在一个较高的维度上(对应于分类对称性))。该分类包括对称性保护的琐事(SPT)顺序和具有代数较高对称性的对称性富含拓扑(集合)顺序。
We introduce the notion of algebraic higher symmetry, which generalizes higher symmetry and is beyond higher group. We show that an algebraic higher symmetry in a bosonic system in $n$-dimensional space is characterized and classified by a local fusion $n$-category. We find another way to describe algebraic higher symmetry by restricting to symmetric sub Hilbert space where symmetry transformations all become trivial. In this case, algebraic higher symmetry can be fully characterized by a non-invertible gravitational anomaly (i.e. an topological order in one higher dimension). Thus we also refer to non-invertible gravitational anomaly as categorical symmetry to stress its connection to symmetry. This provides a holographic and entanglement view of symmetries. For a system with a categorical symmetry, its gapped state must spontaneously break part (not all) of the symmetry, and the state with the full symmetry must be gapless. Using such a holographic point of view, we obtain (1) the gauging of the algebraic higher symmetry; (2) the classification of anomalies for an algebraic higher symmetry; (3) the equivalence between classes of systems, with different (potentially anomalous) algebraic higher symmetries or different sets of low energy excitations, as long as they have the same categorical symmetry; (4) the classification of gapped liquid phases for bosonic/fermionic systems with a categorical symmetry, as gapped boundaries of a topological order in one higher dimension (that corresponds to the categorical symmetry). This classification includes symmetry protected trivial (SPT) orders and symmetry enriched topological (SET) orders with an algebraic higher symmetry.