论文标题

轻度加权的卷积神经网络,用于稍微SAR图像变化检测

A Light-Weighted Convolutional Neural Network for Bitemporal SAR Image Change Detection

论文作者

Wang, Rongfang, Ding, Fan, Jiao, Licheng, Chen, Jia-Wei, Liu, Bo, Ma, Wenping, Wang, Mi

论文摘要

最近,许多卷积神经网络(CNN)已成功地用于BITEMAL SAR图像更改检测中。但是,大多数现有网络太重,占据了大量存储器以进行存储和计算。在本文中,我们提出了一个轻巧的神经网络,以降低计算和空间复杂性,并促进边缘设备上的变化检测。在提出的网络中,我们用瓶颈层代替普通的卷积层,这些层层在输入和输出之间保持相同数量的通道。接下来,我们使用一些非零的条目使用扩张的卷积内核,以减少卷积操作员的运行时间。与常规的卷积神经网络相比,我们轻加权的神经网络将更有效,参数较少。我们在四组Bitemoral SAR图像上验证了轻加权的神经网络。实验结果表明,所提出的网络可以比常规CNN获得更好的性能,并且具有更好的模型概括,尤其是在具有复杂场景的具有挑战性的数据集上。

Recently, many Convolution Neural Networks (CNN) have been successfully employed in bitemporal SAR image change detection. However, most of the existing networks are too heavy and occupy a large volume of memory for storage and calculation. Motivated by this, in this paper, we propose a lightweight neural network to reduce the computational and spatial complexity and facilitate the change detection on an edge device. In the proposed network, we replace normal convolutional layers with bottleneck layers that keep the same number of channels between input and output. Next, we employ dilated convolutional kernels with a few non-zero entries that reduce the running time in convolutional operators. Comparing with the conventional convolutional neural network, our light-weighted neural network will be more efficient with fewer parameters. We verify our light-weighted neural network on four sets of bitemporal SAR images. The experimental results show that the proposed network can obtain better performance than the conventional CNN and has better model generalization, especially on the challenging datasets with complex scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源