论文标题
银河系中的恒星速度分布函数
The stellar velocity distribution function in the Milky Way galaxy
论文作者
论文摘要
太阳附近的恒星速度分布函数(DF)使用SDSS Apogee Survey的DR16和\ emph {Gaia} DR2的数据重新检查。通过利用Apogee的能力,可以通过薄磁盘,较厚的磁盘和(积聚的)光晕种群进行化学区分,我们可以首次为这些化学分离的种群得出三维速度DFS。我们采用了这种较小但更多的富含数据的Apogee+{\ it Gaia}样本来构建本地恒星种群速度DFS的\ emph {数据驱动模型},并将其用作评估这些人口比例超过5 $ <$ $ $ $ $ $ $ <$ $ $ $ $ $ $ $ $ $ -1 $ -1 $ $ $ <$ -1.5 $ <$ $ <$ $ <$ 1 AS的基础向量源自较大,更完整的(即,全天气,限制){\ it gaia}数据库。我们发现,选定的\ emph {gaia}数据集中的81.9 $ \ pm $ 3.1 $ \%$ $ $ $ \%$是薄烟星,16.6 $ \ pm $ 3.2 $ \%$是厚磁心的星星,1.5 $ \ $ \ $ \ $ 0.1 $ \%$ \%$属于Milky Way stellar stellar stellar stellar halo。 We also find the local thick-to-thin-disk density normalization to be $ρ_{T}(R_{\odot})$/$ρ_{t}(R_{\odot})$ = 2.1 $\pm$ 0.2$\%$, a result consistent with, but determined in a completely different way than, typical starcount/density analyses.使用相同的方法,发现本地的晕盘密度归一化为$ρ_{h}(r _ {\ odot})$/($ρ_{t}(r _ {\ odot})$ + $ + $ p $ p _ {t}(t}(t}(t})将光环和金属螺旋厚的磁盘星的化学重叠。
The stellar velocity distribution function (DF) in the solar vicinity is re-examined using data from the SDSS APOGEE survey's DR16 and \emph{Gaia} DR2. By exploiting APOGEE's ability to chemically discriminate with great reliability the thin disk, thick disk and (accreted) halo populations, we can, for the first time, derive the three-dimensional velocity DFs for these chemically-separated populations. We employ this smaller, but more data-rich APOGEE+{\it Gaia} sample to build a \emph{data-driven model} of the local stellar population velocity DFs, and use these as basis vectors for assessing the relative density proportions of these populations over 5 $<$ $R$ $<$ 12 kpc, and $-1.5$ $<$ $z$ $<$ 2.5 kpc range as derived from the larger, more complete (i.e., all-sky, magnitude-limited) {\it Gaia} database. We find that 81.9 $\pm$ 3.1$\%$ of the objects in the selected \emph{Gaia} data-set are thin-disk stars, 16.6 $\pm$ 3.2$\%$ are thick-disk stars, and 1.5 $\pm$ 0.1$\%$ belong to the Milky Way stellar halo. We also find the local thick-to-thin-disk density normalization to be $ρ_{T}(R_{\odot})$/$ρ_{t}(R_{\odot})$ = 2.1 $\pm$ 0.2$\%$, a result consistent with, but determined in a completely different way than, typical starcount/density analyses. Using the same methodology, the local halo-to-disk density normalization is found to be $ρ_{H}(R_{\odot})$/($ρ_{T}(R_{\odot})$ + $ρ_{t}(R_{\odot})$) = 1.2 $\pm$ 0.6$\%$, a value that may be inflated due to chemical overlap of halo and metal-weak thick disk stars.