论文标题

身体上的力在无粘液中移动的力

The force on a body moving in an inviscid fluid

论文作者

DeVoria, A. C., Mohseni, K.

论文摘要

本文对在二维中通过这种流体运动的力的力学理论提出了一些新的贡献。有人认为,人体的加速度对应于涡度产生,而涡度的产生与人体的瞬时速度无关,因此对正常速度的边界条件对应。代表身体的涡流表的强度保留了一定的自由度,代表与由高阶Navier-Stokes方程控制的切向边界条件的净效应。这种自由度是人体加速产生的涡度的循环。同等地,它是围绕身体和任何涡旋涡度的轮廓周围的净循环。根据开尔文的循环定理,围绕该系统的循环的非零值必须传达给无穷大。这与定理通常接受该循环始终为零的情况形成鲜明对比。这种情况无法捕获新产生的涡度在加速时对身体表面的影响。此外,正常速度连续性的通常边界条件放松,以使流体夹带成不连续性的表面,该表面代表物理问题粘性层中包含的质量。详细介绍了广义力计算。与生物推进有关的一些建模问题证明了由于身体加速而产生的涡度产生的重要性。

This paper presents some novel contributions to the theory of inviscid flow regarding the forces exerted on a body moving through such a fluid in two dimensions. It is argued that acceleration of the body corresponds to vorticity generation that is independent of the instantaneous velocity of the body and thus the boundary condition on the normal velocity. The strength of the vortex sheet representing the body retains a degree of freedom that represents the net effect of the tangential boundary condition associated with the viscous flow governed by the higher-order Navier-Stokes equations. This degree of freedom is the circulation of the vorticity generated by the acceleration of the body. Equivalently, it is the net circulation around a contour enclosing the body and any shed vorticity. In accordance with Kelvin's circulation theorem, a non-zero value of the circulation around this system is necessarily communicated to infinity. This contrasts with the usual acceptance of the theorem as requiring this circulation to be zero at all times; a condition that is incapable of capturing the effect of newly generated vorticity on the body surface when it accelerates. Additionally, the usual boundary condition of continuity of normal velocity is relaxed to allow for fluid entrainment into surfaces of discontinuity that represent the mass contained within the viscous layers of the physical problem. The generalized force calculation is presented in detail. The importance of the vorticity generation due to body acceleration is demonstrated on some modeled problems relevant to biological propulsion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源