论文标题

多体拓扑和没有开放界限的皮肤状态

Many-Body Topological and Skin States without Open Boundaries

论文作者

Lee, Ching Hua

论文摘要

稳健的边界状态一直是最近研究的重点,无论是拓扑保护状态还是非铁皮皮肤状态。在这项工作中,我们表明多体效应也可以诱导这些坚固状态的类似物,以代替实际的物理边界。粒子统计或适当设计的相互作用,即在超低原子晶格中可以限制可访问的多体希尔伯特空间,并在空间周期性的高维构型空间中引入有效边界。我们证明了拓扑性手性模式在没有开放界限的两个弗拉米式跳跃模型中的出现,费米对限制并不对称地传播了适当选择的通量。不同颗粒物种的异质非晶状体跳也可能导致在翻译不变的环境中稳健的粒子团块,让人联想到开放边界处的皮肤模式的积累。但是,与固定的开放边界不同,有效边界对应于不可穿透的颗粒的位置,并且具有动态性,从根本上产生了不同的多体与单体时间演化行为。由于非转向局部积累对受限希尔伯特空间的维度不可知,因此我们的多体皮肤状态直接在热力学极限下推广。但是,多体拓扑状态在非试图方面依赖性依赖性,它们的详细探索将刺激在较高维拓扑不变的较高拓扑中的进一步研究。

Robust boundary states have been the focus of much recent research, both as topologically protected states and as non-Hermitian skin states. In this work, we show that many-body effects can also induce analogs of these robust states in place of actual physical boundaries. Particle statistics or suitably engineered interactions i.e. in ultracold atomic lattices can restrict the accessible many-body Hilbert space, and introduce effective boundaries in a spatially periodic higher-dimensional configuration space. We demonstrate the emergence of topological chiral modes in a two-fermion hopping model without open boundaries, with fermion pairs confined and asymmetrically propagated by suitably chosen fluxes. Heterogeneous non-reciprocal hoppings across different particle species can also result in robust particle clumping in a translation invariant setting, reminiscent of skin mode accumulation at an open boundary. But unlike fixed open boundaries, effective boundaries correspond to the locations of impenetrable particles and are dynamic, giving rise to fundamentally different many-body vs. single-body time evolution behavior. Since non-reciprocal accumulation is agnostic to the dimensionality of restricted Hilbert spaces, our many-body skin states generalize directly in the thermodynamic limit. The many-body topological states, however, are nontrivially dimension-dependent, and their detailed exploration will stimulate further studies in higher dimensional topological invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源