论文标题
图像超分辨率具有跨尺度的非本地关注和详尽的自我挖掘
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
论文作者
论文摘要
基于深度卷积的单图像超分辨率(SISR)网络包含从大规模外部图像资源学习的好处,用于本地恢复,但是大多数现有作品都忽略了自然图像中长距离特征的相似性。最近的一些作品通过探索非本地关注模块成功地利用了这种内在特征相关性。但是,当前的深层模型都没有研究图像的另一个固有属性:跨尺度特征相关。在本文中,我们提出了第一个跨尺度的非本地(CS-NL)注意模块,并集成到复发性神经网络中。通过将新的CS-NL先验与强大的复发融合单元中的局部和尺度非本地先验相结合,我们可以在单个低分辨率(LR)图像中找到更多的跨尺度特征相关性。通过详尽整合所有可能的先验,SISR的性能得到了显着提高。广泛的实验证明了通过在多个SISR基准上设置新的最先进的CS-NL模块的有效性。
Deep convolution-based single image super-resolution (SISR) networks embrace the benefits of learning from large-scale external image resources for local recovery, yet most existing works have ignored the long-range feature-wise similarities in natural images. Some recent works have successfully leveraged this intrinsic feature correlation by exploring non-local attention modules. However, none of the current deep models have studied another inherent property of images: cross-scale feature correlation. In this paper, we propose the first Cross-Scale Non-Local (CS-NL) attention module with integration into a recurrent neural network. By combining the new CS-NL prior with local and in-scale non-local priors in a powerful recurrent fusion cell, we can find more cross-scale feature correlations within a single low-resolution (LR) image. The performance of SISR is significantly improved by exhaustively integrating all possible priors. Extensive experiments demonstrate the effectiveness of the proposed CS-NL module by setting new state-of-the-arts on multiple SISR benchmarks.