论文标题

重新召集的温策尔 - 克拉默斯 - 布鲁林系列:量化和物理解释

Resummed Wentzel-Kramers-Brillouin Series: Quantization and Physical Interpretation

论文作者

Tripathi, B.

论文摘要

Gentzel-Kramers-brillouin(WKB)扰动系列是一种广泛用于求解线性波的技术,通常是发散的,充其量是渐近的,因此阻碍了前几个前几个领先效应的预测。在这里,我们报告了一个封闭形式的公式,该公式恰好将扰动的WKB系列恢复到全端,以解决两个转折点问题。该公式被优雅地解释为使用空间变化的波数和与波传播率相关的系数评估的动作。单位透射率得出BOHR-SOMMERFELD量化。

The Wentzel-Kramers-Brillouin (WKB) perturbative series, a widely used technique for solving linear waves, is typically divergent and at best, asymptotic, thus impeding predictions beyond the first few leading-order effects. Here, we report a closed-form formula that exactly resums the perturbative WKB series to all-orders for two turning point problem. The formula is elegantly interpreted as the action evaluated using the product of spatially-varying wavenumber and a coefficient related to the wave transmissivity; unit transmissivity yields the Bohr-Sommerfeld quantization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源