论文标题

复曲面兰道 - 金茨堡模型的突变等效性

Mutation equivalence of toric Landau-Ginzburg models

论文作者

Prince, Thomas

论文摘要

鉴于Fano完整的交叉路口,由收藏线的部分定义,nef线捆绑$ l_1,\ ldots,l_c $ in Fano toric歧管$ y $,givental/hori-vafa的构造提供了镜子偶尔二线Landau-Ginzburg模型。该结构取决于选择合适的NEF分区的选择;也就是说,由$ y $确定的风扇射线的分区。我们表明,由代表相同完整交叉点的不同NEF分区构建的复曲面Landau-Ginzburg模型与保留的Birational图相关。特别是,可以从这些Landau-Ginzburg模型中获得的各种Laurent多项式镜子是突变的。

Given a Fano complete intersection defined by sections of a collection nef line bundles $L_1,\ldots, L_c$ on a Fano toric manifold $Y$, a construction of Givental/Hori-Vafa provides a mirror-dual Landau-Ginzburg model. This construction depends on a choice of suitable nef partition; that is, a partition of the rays of the fan determined by $Y$. We show that toric Landau-Ginzburg models constructed from different nef partitions representing the same complete intersection are related by a volume preserving birational map. In particular, various Laurent polynomial mirrors which may be obtained from these Landau-Ginzburg models are mutation equivalent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源