论文标题

元集:探索数据驱动的超材料设计的形状和特性空间

METASET: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design

论文作者

Chan, Yu-Chin, Ahmed, Faez, Wang, Liwei, Chen, Wei

论文摘要

机械超材料的数据驱动设计是一种越来越流行的方法,可以打击昂贵的物理模拟和巨大的(通常是棘手的几何设计空间)。使用单位单元格的预算数据集,可以通过组合搜索算法快速填充多尺度结构,并且可以培训机器学习模型以加速过程。但是,对数据的依赖性引起了一个独特的挑战:包含更多某些形状或物理属性的不平衡数据集可能不利于数据驱动方法的疗效。在答案中,我们认为,一组较小但多样化的单元单元会导致可扩展的搜索和无偏学习。为了选择此类子集,我们提出了一种方法,即1)使用相似性指标和阳性半明确核来共同测量形状和特性空间中单位细胞的接近度,以及2)结合确定点过程,以进行有效的子集选择。此外,元集可以在形状和财产多样性之间进行权衡,以便可以为各种应用调整子集。通过设计具有目标位移曲线的2D超材料,我们证明了较小,多样化的子集确实可以改善搜索过程以及结构性能。通过消除使用对称规则创建的3D单元单元的数据集中的固有重叠,我们还说明了我们的灵活方法可以提炼独特的子集,而不论所使用的度量如何。我们的多样化子集可公开提供任何设计师。

Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: An imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that 1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces, and 2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源