论文标题

使用细胞振动模型的低光图像增强

Low-light Image Enhancement Using the Cell Vibration Model

论文作者

Lei, Xiaozhou, Fei, Zixiang, Zhou, Wenju, Zhou, Huiyu, Fei, Minrui

论文摘要

低光很可能导致图像质量的降解,甚至导致视觉任务失败。现有的图像增强技术容易产生过度增强,颜色失真或时间消耗,其适应性相当有限。因此,我们提出了一种新的单一低光图像轻度增强方法。首先,根据光子刺激引起的膜振动的分析,提出了能量模型。然后,基于能量模型的独特数学特性,并与伽马校正模型相结合,提出了一种新的全局轻度增强模型。此外,发现图像亮度与伽马强度之间的特殊关系。最后,提出了一种局部融合策略,包括分割,过滤和融合,以优化全球轻度增强图像的局部细节。实验结果表明,所提出的算法优于避免颜色失真,恢复黑暗区域的纹理,再现自然色和减少时间成本的九种最新方法。图像源和代码将在https://github.com/leixiaozhou/cdefmethod上发布。

Low light very likely leads to the degradation of an image's quality and even causes visual task failures. Existing image enhancement technologies are prone to overenhancement, color distortion or time consumption, and their adaptability is fairly limited. Therefore, we propose a new single low-light image lightness enhancement method. First, an energy model is presented based on the analysis of membrane vibrations induced by photon stimulations. Then, based on the unique mathematical properties of the energy model and combined with the gamma correction model, a new global lightness enhancement model is proposed. Furthermore, a special relationship between image lightness and gamma intensity is found. Finally, a local fusion strategy, including segmentation, filtering and fusion, is proposed to optimize the local details of the global lightness enhancement images. Experimental results show that the proposed algorithm is superior to nine state-of-the-art methods in avoiding color distortion, restoring the textures of dark areas, reproducing natural colors and reducing time cost. The image source and code will be released at https://github.com/leixiaozhou/CDEFmethod.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源