论文标题

在$ p(\ cdot)$ - 涉及临界增长的基尔霍夫类型的双hammonic问题

On a $p(\cdot)$-biharmonic problem of Kirchhoff type involving critical growth

论文作者

Chung, Nguyen Thanh, Ho, Ky

论文摘要

我们为Sobolev空间$ W^{2,p(\ cdot)}(ω)\ cap w_0^{1,p(\ cdot)}(ω)$建立了一个浓度 - 紧凑性原理。使用此结果,我们为涉及$ P(\ cdot)$ - Biharmonic运算符和关键增长的一类Kirchhoff类型问题获得了几种存在和多重性结果。

We establish a concentration-compactness principle for the Sobolev space $W^{2,p(\cdot)}(Ω)\cap W_0^{1,p(\cdot)}(Ω)$ that is a tool for overcoming the lack of compactness of the critical Sobolev imbedding. Using this result we obtain several existence and multiplicity results for a class of Kirchhoff type problems involving $p(\cdot)$-biharmonic operator and critical growth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源