论文标题
在$ p(\ cdot)$ - 涉及临界增长的基尔霍夫类型的双hammonic问题
On a $p(\cdot)$-biharmonic problem of Kirchhoff type involving critical growth
论文作者
论文摘要
我们为Sobolev空间$ W^{2,p(\ cdot)}(ω)\ cap w_0^{1,p(\ cdot)}(ω)$建立了一个浓度 - 紧凑性原理。使用此结果,我们为涉及$ P(\ cdot)$ - Biharmonic运算符和关键增长的一类Kirchhoff类型问题获得了几种存在和多重性结果。
We establish a concentration-compactness principle for the Sobolev space $W^{2,p(\cdot)}(Ω)\cap W_0^{1,p(\cdot)}(Ω)$ that is a tool for overcoming the lack of compactness of the critical Sobolev imbedding. Using this result we obtain several existence and multiplicity results for a class of Kirchhoff type problems involving $p(\cdot)$-biharmonic operator and critical growth.