论文标题
具有超相关的哈密顿量对电子结构的量子模拟:量子计算机上的足迹提高了精度
Quantum simulation of electronic structure with a transcorrelated Hamiltonian: improved accuracy with a smaller footprint on the quantum computer
论文作者
论文摘要
证明了具有转化的哈密顿量的电子结构的量子模拟,其中包括一些电子相关效应。这项工作中使用的超相关哈密顿量是通过与多项式成本进行经典构建的,该相似性相似性转换与明确相关的两体统一操作员。这位哈密顿量是隐性化的,不超过两粒子的相互作用,并且没有电子电子奇异性。我们通过关注Schrodinger方程的广泛使用的求解器来研究这种转化的哈密顿量对量子模拟的准确性和计算成本的影响,即基于单一耦合群集与单一偶联集群(Q-uccsd)ansatz,是基于单位耦合群集的变异量子量子质量方法。然而,这里提出的形式主义直接转化为其他化学的量子算法。我们的结果表明,与极其紧凑的碱基搭配的跨性关系,产生明确的相关能量,与大型碱基的能量相当。对于此处研究的化学物种,基于基础6-31G的基础明确相关的能量具有CC-PVTZ质量。非常紧凑的超相关汉密尔顿的使用减少了将CC-PVTZ质量实现CC-PVTZ质量所需的CNOT大门数量的数量,最多可减少两个数量级,而Qubits的数量则减少了三倍。
Quantum simulations of electronic structure with a transformed Hamiltonian that includes some electron correlation effects are demonstrated. The transcorrelated Hamiltonian used in this work is efficiently constructed classically, at polynomial cost, by an approximate similarity transformation with an explicitly correlated two-body unitary operator. This Hamiltonian is Hermitian, includes no more than two-particle interactions, and is free of electron-electron singularities. We investigate the effect of such a transformed Hamiltonian on the accuracy and computational cost of quantum simulations by focusing on a widely used solver for the Schrodinger equation, namely the variational quantum eigensolver method, based on the unitary coupled cluster with singles and doubles (q-UCCSD) Ansatz. Nevertheless, the formalism presented here translates straightforwardly to other quantum algorithms for chemistry. Our results demonstrate that a transcorrelated Hamiltonian, paired with extremely compact bases, produces explicitly correlated energies comparable to those from much larger bases. For the chemical species studied here, explicitly correlated energies based on an underlying 6-31G basis had cc-pVTZ quality. The use of the very compact transcorrelated Hamiltonian reduces the number of CNOT gates required to achieve cc-pVTZ quality by up to two orders of magnitude, and the number of qubits by a factor of three.