论文标题
部分可观测时空混沌系统的无模型预测
Spatial sampling of MEG and EEG revisited: From spatial-frequency spectra to model-informed sampling
论文作者
论文摘要
在本文中,我们分析了电(EEG)磁脑摄影(MEG)的空间采样,其中通常在弯曲的表面(例如头皮)上采样电场或磁场。使用模拟测量值,我们研究了脑电图以及较高级别MEG中的空间频率含量。分析表明,级别的MEG通常将从EEG或级别MEG的样本中受益三倍。基于高斯过程和实验设计的理论,我们建议一种在相对于先前假设最佳的表面上获得采样位置的方法。此外,该方法允许控制网格中采样位置的均匀性。通过模拟使用不同先验的网格的性能,我们表明,对于较少数量的空间样品,模型的非均匀抽样可能是有益的。对于大量样品,均匀的采样网格产生的总信息与模型信息网格几乎相同。
In this paper, we analyze spatial sampling of electro- (EEG) magnetoencephalography (MEG), where the electric or magnetic field is typically sampled on a curved surface such as the scalp. Using simulated measurements, we study the spatial-frequency content in EEG as well as in on- and off-scalp MEG. The analysis suggests that on-scalp MEG would generally benefit from three times more samples than EEG or off-scalp MEG. Based on the theory of Gaussian processes and experimental design, we suggest an approach to obtain sampling locations on surfaces that are optimal with respect to prior assumptions. Additionally, the approach allows to control, e.g., the uniformity of the sampling locations in the grid. By simulating the performance of grids constructed with different priors, we show that for a low number of spatial samples, model-informed non-uniform sampling can be beneficial. For a large number of samples, uniform sampling grids yield nearly the same total information as the model-informed grids.