论文标题

量子信息的费米金系统人

Fermionic systems for quantum information people

论文作者

Szalay, Szilárd, Zimborás, Zoltán, Máté, Mihály, Barcza, Gergely, Schilling, Christian, Legeza, Örs

论文摘要

费米子模式的算子代数与量子位的构象一样,它们之间的差异是双重的:一方面与模式子集和多Quibit子系统相对应的子代数的嵌入,另一方面是同等的,在另一方面,在费马克中的均值超选择。我们广泛讨论了这两个基本差异,并通过量子信息理论的角度通过约旦(Jordan)以连贯,独立,教学的方式来说明这些差异。我们的观点使我们开发了有用的新工具,用于处理费米子系统,例如费米子(准)张量产品,费米子的典型嵌入,费米子部分痕迹,地图的典型产物和图像的效率嵌入。我们通过直接,易于适用的公式(无模式排列)来制定这些模式分区。还表明,费米子还原状态可以通过含有适当的相因子的费米子部分迹线来计算。我们还考虑了Fermionic模式相关性和纠缠概念的变体,如果施加了平价超选择规则,则可以赋予通常的基于本地操作的动机。我们还阐明了与关节图扩展有关的其他一些基本要点,这使得在费米子系统的描述中不可避免地取代了平价。

The operator algebra of fermionic modes is isomorphic to that of qubits, the difference between them is twofold: the embedding of subalgebras corresponding to mode subsets and multiqubit subsystems on the one hand, and the parity superselection in the fermionic case on the other. We discuss these two fundamental differences extensively, and illustrate these through the Jordan--Wigner representation in a coherent, self-contained, pedagogical way, from the point of view of quantum information theory. Our perspective leads us to develop useful new tools for the treatment of fermionic systems, such as the fermionic (quasi-)tensor product, fermionic canonical embedding, fermionic partial trace, fermionic products of maps and fermionic embeddings of maps. We formulate these by direct, easily applicable formulas, without mode permutations, for arbitrary partitionings of the modes. It is also shown that fermionic reduced states can be calculated by the fermionic partial trace, containing the proper phase factors. We also consider variants of the notions of fermionic mode correlation and entanglement, which can be endowed with the usual, local operation based motivation, if the parity superselection rule is imposed. We also elucidate some other fundamental points, related to joint map extensions, which make the parity superselection inevitable in the description of fermionic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源