论文标题

个体行为如何推动在线社区规模的不平等:基于代理的模拟

How individual behaviors drive inequality in online community sizes: an agent-based simulation

论文作者

Foote, Jeremy, TeBlunthuis, Nathan, Hill, Benjamin Mako, Shaw, Aaron

论文摘要

为什么在线社区规模如此不平等?这个问题的大多数答案都指出了从累积优势等物理学中得出的一般数学过程。这些解释几乎没有对个人加入和离开社区做出的特定社会动态或决策的见解。此外,从累积优势方面的解释并不能借鉴研究个人行为的大量社会计算研究。我们的工作通过测试两个用于解释社区加入的有影响力的社会机制,还可以解释社区规模的分布,从而弥合了这种鸿沟。使用基于代理的模拟,我们评估了基于个人预期收益的个人级别的社会曝光和决策过程如何再现Reddit的经验社区规模数据。我们的模拟通过提供两个过程一起提供的证据 - 但双方都不会产生社区规模的现实分布,从而有助于社会计算理论。我们的结果还说明了基于代理的模拟对在线社区研究人员的潜在价值,以评估和桥接个人和群体级别的理论。

Why are online community sizes so extremely unequal? Most answers to this question have pointed to general mathematical processes drawn from physics like cumulative advantage. These explanations provide little insight into specific social dynamics or decisions that individuals make when joining and leaving communities. In addition, explanations in terms of cumulative advantage do not draw from the enormous body of social computing research that studies individual behavior. Our work bridges this divide by testing whether two influential social mechanisms used to explain community joining can also explain the distribution of community sizes. Using agent-based simulations, we evaluate how well individual-level processes of social exposure and decisions based on individual expected benefits reproduce empirical community size data from Reddit. Our simulations contribute to social computing theory by providing evidence that both processes together---but neither alone---generate realistic distributions of community sizes. Our results also illustrate the potential value of agent-based simulation to online community researchers to both evaluate and bridge individual and group-level theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源