论文标题
在某些准文献和椭圆形映射上
On certain quasiconformal and elliptic mappings
论文作者
论文摘要
令$ \ overline {\ mathbb {d}} $为单位磁盘$ \ mathbb {d} $的关闭,在复杂平面$ \ mathbb {c} $和$ g $中是$ \ overline {\ mathbb {d}} $的连续函数。在本文中,我们讨论了满足泊松方程$Δf= g $ in $ \ mathbb {d} $中的椭圆形映射$ f $的一些特征,然后分别与有限的外围和有限的辐射长度建立一些敏锐的变形定理。获得的结果是相应的经典结果的扩展。
Let $\overline{\mathbb{D}}$ be the closure of the unit disk $\mathbb{D}$ in the complex plane $\mathbb{C}$ and $g$ be a continuous function in $\overline{\mathbb{D}}$. In this paper, we discuss some characterizations of elliptic mappings $f$ satisfying the Poisson's equation $Δf=g$ in $\mathbb{D}$, and then establish some sharp distortion theorems on elliptic mappings with the finite perimeter and the finite radial length, respectively. The obtained results are the extension of the corresponding classical results.