论文标题

白日梦:准确估计优化的DNN培训功效

Daydream: Accurately Estimating the Efficacy of Optimizations for DNN Training

论文作者

Zhu, Hongyu, Phanishayee, Amar, Pekhimenko, Gennady

论文摘要

现代深度神经网络(DNN)培训工作使用复杂且异质的软件/硬件堆栈。在不同的部署配置中使用时,软件级优化的功效可能会有很大差异。 ML从业人员和系统开发人员分别实施每个优化,并确定哪些将改善自己的配置中的性能是繁重且容易出错的。不幸的是,现有的分析工具并不旨在回答预测性问题,例如“优化X如何影响我的模型的性能?”。我们解决了这一关键限制,并提出了一种新的分析工具,即白日梦,以帮助程序员有效探索DNN优化的功效。白日梦模型DNN执行具有基于Cupti收集的低级痕迹的细粒依赖图图,并通过基于依赖关系图模拟执行来预测运行时。白日梦使用DNN域特异性知识绘制低级轨迹,并引入了一组图形转换原始图,这些图可以很容易地模拟各种优化。我们表明,白日梦能够对大多数主流DNN优化技术进行建模,并准确预测优化的功效,从而导致绩效的显着改善。

Modern deep neural network (DNN) training jobs use complex and heterogeneous software/hardware stacks. The efficacy of software-level optimizations can vary significantly when used in different deployment configurations. It is onerous and error-prone for ML practitioners and system developers to implement each optimization separately, and determine which ones will improve performance in their own configurations. Unfortunately, existing profiling tools do not aim to answer predictive questions such as "How will optimization X affect the performance of my model?". We address this critical limitation, and proposes a new profiling tool, Daydream, to help programmers efficiently explore the efficacy of DNN optimizations. Daydream models DNN execution with a fine-grained dependency graph based on low-level traces collected by CUPTI, and predicts runtime by simulating execution based on the dependency graph. Daydream maps the low-level traces using DNN domain-specific knowledge, and introduces a set of graph-transformation primitives that can easily model a wide variety of optimizations. We show that Daydream is able to model most mainstream DNN optimization techniques, and accurately predict the efficacy of optimizations that will result in significant performance improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源