论文标题
使用生成深神经网络的最小侵入性机器人辅助手术的手术仪器进行分割
Segmentation of Surgical Instruments for Minimally-Invasive Robot-Assisted Procedures Using Generative Deep Neural Networks
论文作者
论文摘要
这项工作证明,通过使用通过域适应性增强的训练数据,可以改善有关微创手术工具的语义细分。该方法的好处是双重的。首先,它通过将合成数据转换为现实的数据来抑制需要手动标记数千个图像的需求。为此,使用了一个自行车模型,该模型将转换源数据集以近似目标数据集的域分布。其次,使用完美标签的新生成的数据用于训练语义分割神经网络U-NET。该方法显示了有关其旋转位置和照明条件的数据的概括能力。然而,这种方法的一种警告是,该模型无法很好地推广到其他外科手术仪器,其形状与训练的形状不同。这是由于训练数据的几何分布缺乏较高的差异所致。未来的工作将着重于使模型更加规模不变,并能够适应以前从培训中看到的其他类型的手术工具。
This work proves that semantic segmentation on minimally invasive surgical instruments can be improved by using training data that has been augmented through domain adaptation. The benefit of this method is twofold. Firstly, it suppresses the need of manually labeling thousands of images by transforming synthetic data into realistic-looking data. To achieve this, a CycleGAN model is used, which transforms a source dataset to approximate the domain distribution of a target dataset. Secondly, this newly generated data with perfect labels is utilized to train a semantic segmentation neural network, U-Net. This method shows generalization capabilities on data with variability regarding its rotation- position- and lighting conditions. Nevertheless, one of the caveats of this approach is that the model is unable to generalize well to other surgical instruments with a different shape from the one used for training. This is driven by the lack of a high variance in the geometric distribution of the training data. Future work will focus on making the model more scale-invariant and able to adapt to other types of surgical instruments previously unseen by the training.