论文标题
古典旋转汉密尔顿人是上下文敏感语言
Classical spin Hamiltonians are context-sensitive languages
论文作者
论文摘要
古典旋转汉密尔顿人是建模复杂系统的强大工具,其特征是当地的哈密顿人给予的局部结构。最好的当地结构之一是形式语言的语法,它们在计算机科学和语言学中是核心,并且具有乔姆斯基层次结构给出的自然复杂性度量。如果我们将古典旋转汉密尔顿人视为语言,那么当地的汉密尔顿人与什么语法相对应?在这里,我们将古典旋转汉密尔顿人作为形式语言,并在乔姆斯基层次结构中进行分类。我们证明(有效地)零维旋转的汉密尔顿人的语言是常规的,一维自旋汉密尔顿人是无确定性的上下文,并且更高维度和全能的自旋汉密尔顿人对上下文敏感。这为经典旋转汉密尔顿人提供了一种新的复杂度度量,该方法捕获了识别旋转构型及其能量的硬度。我们将其与基态能量问题的计算复杂性进行了比较,并为Ising模型找到了不同的易于限制的阈值。我们还研究了对旋转汉密尔顿语的语言的依赖。最后,我们定义了旋转哈密顿量的时间演变的语言,并将其分类为乔姆斯基层次结构。我们的工作表明,通用旋转模型比通用图灵机弱。
Classical spin Hamiltonians are a powerful tool to model complex systems, characterised by a local structure given by the local Hamiltonians. One of the best understood local structures is the grammar of formal languages, which are central in computer science and linguistics, and have a natural complexity measure given by the Chomsky hierarchy. If we see classical spin Hamiltonians as languages, what grammar do the local Hamiltonians correspond to? Here we cast classical spin Hamiltonians as formal languages, and classify them in the Chomsky hierarchy. We prove that the language of (effectively) zero-dimensional spin Hamiltonians is regular, one-dimensional spin Hamiltonians is deterministic context-free, and higher-dimensional and all-to-all spin Hamiltonians is context-sensitive. This provides a new complexity measure for classical spin Hamiltonians, which captures the hardness of recognising spin configurations and their energies. We compare it to the computational complexity of the ground state energy problem, and find a different easy-to-hard threshold for the Ising model. We also investigate the dependence on the language of the spin Hamiltonian. Finally, we define the language of the time evolution of a spin Hamiltonian and classify it in the Chomsky hierarchy. Our work suggests that universal spin models are weaker than universal Turing machines.