论文标题
重新审视大爆炸核合成的原始黑洞的限制
Constraints on Primordial Black Holes From Big Bang Nucleosynthesis Revisited
论文作者
论文摘要
随着空间的扩大,黑洞中的能量密度相对于辐射的能量密度增加,为我们提供了考虑早期宇宙中包含大量此类物体的场景的动机。在这项研究中,我们重新审视了从光元素丰度测量的原始黑洞的限制。黑洞及其霍金蒸发产品可以通过改变中子 - 普罗顿冻结时的扩张速率,以及可以通过辐射可以将质子转化为中子,反之亦然,从而影响大爆炸核合成(BBN)的时代。因此,这种黑洞可以提高原始中子与普罗替型比率,并增加最终产生的氦气量。此外,霍金蒸发的产物可能会破坏氦核,这既可以降低氦的丰度,又增加了原始氘的丰度。在以前的工作的基础上,我们利用现代的氘和氦测量值来获得对黑洞的严格限制,这些孔以$ t _ {\ rm evap} \ sim 10^{ - 1} $ s至$ \ sim 10^{13} $ s(13} $ s(对应于$ m \ sim 6 \ sim times 10^8 $ g,模型粒子含量)。我们还考虑了超出标准模型的物理学如何影响这些约束。由于霍金蒸发的引力性质,黑洞蒸发的速率以及通过此过程产生的颗粒类型取决于完整的粒子谱。在这种情况下,我们讨论了具有大量脱钩学位(\ ie〜大型隐藏扇区)的场景,以及TEV尺度超对称性的模型。
As space expands, the energy density in black holes increases relative to that of radiation, providing us with motivation to consider scenarios in which the early universe contained a significant abundance of such objects. In this study, we revisit the constraints on primordial black holes derived from measurements of the light element abundances. Black holes and their Hawking evaporation products can impact the era of Big Bang Nucleosynthesis (BBN) by altering the rate of expansion at the time of neutron-proton freeze-out, as well as by radiating mesons which can convert protons into neutrons and vice versa. Such black holes can thus enhance the primordial neutron-to-proton ratio, and increase the amount of helium that is ultimately produced. Additionally, the products of Hawking evaporation can break up helium nuclei, which both reduces the helium abundance and increases the abundance of primordial deuterium. Building upon previous work, we make use of modern deuterium and helium measurements to derive stringent constraints on black holes which evaporate in $t_{\rm evap} \sim 10^{-1}$ s to $\sim 10^{13}$ s (corresponding to $M \sim 6\times 10^8$ g to $\sim 2 \times 10^{13}$ g, assuming Standard Model particle content). We also consider how physics beyond the Standard Model could impact these constraints. Due to the gravitational nature of Hawking evaporation, the rate at which a black hole evaporates, and the types of particles that are produced through this process, depend on the complete particle spectrum. Within this context, we discuss scenarios which feature a large number of decoupled degrees-of-freedom (\ie~large hidden sectors), as well as models of TeV-scale supersymmetry.