论文标题
在野外识别车牌识别的强大的注意框架
A Robust Attentional Framework for License Plate Recognition in the Wild
论文作者
论文摘要
在自然场景图像中识别车牌是一项重要但仍然具有挑战性的任务。许多现有的方法对于在受限条件下收集的车牌,例如在额叶和水平视角以及良好的照明条件下收集的车牌表现良好。但是,它们的性能在不受约束的环境中大大下降,该环境具有旋转,失真,遮挡,模糊,阴影或极端黑暗或明亮的条件。在这项工作中,我们为野外识别车牌识别的强大框架提出了一个强大的框架。它由用于车牌图像生成的量身定制的自行车模型和用于板识别的精心设计的图像到序列网络。一方面,基于自行车的板板生成引擎减轻了疲惫的人类注释工作。可以通过更加平衡的字符分布和各种拍摄条件获得大量训练数据,这有助于在很大程度上提高识别精度。另一方面,具有基于Xception的CNN编码器的2D基于2D的车牌识别器能够准确,稳健地识别具有不同模式的车牌。在不使用任何启发式规则或后处理的情况下,我们的方法在四个公共数据集上实现了最先进的性能,这证明了我们框架的一般性和鲁棒性。此外,我们发布了一个名为“ CLPD”的新车牌数据集,其中有1200张来自中国大陆31个省的图像。该数据集可从以下网站获得:https://github.com/wangpengnorman/clpd_dataset。
Recognizing car license plates in natural scene images is an important yet still challenging task in realistic applications. Many existing approaches perform well for license plates collected under constrained conditions, eg, shooting in frontal and horizontal view-angles and under good lighting conditions. However, their performance drops significantly in an unconstrained environment that features rotation, distortion, occlusion, blurring, shading or extreme dark or bright conditions. In this work, we propose a robust framework for license plate recognition in the wild. It is composed of a tailored CycleGAN model for license plate image generation and an elaborate designed image-to-sequence network for plate recognition. On one hand, the CycleGAN based plate generation engine alleviates the exhausting human annotation work. Massive amount of training data can be obtained with a more balanced character distribution and various shooting conditions, which helps to boost the recognition accuracy to a large extent. On the other hand, the 2D attentional based license plate recognizer with an Xception-based CNN encoder is capable of recognizing license plates with different patterns under various scenarios accurately and robustly. Without using any heuristics rule or post-processing, our method achieves the state-of-the-art performance on four public datasets, which demonstrates the generality and robustness of our framework. Moreover, we released a new license plate dataset, named "CLPD", with 1200 images from all 31 provinces in mainland China. The dataset can be available from: https://github.com/wangpengnorman/CLPD_dataset.