论文标题
孤子解决方案及其在反向空间和反向空间非本地离散衍生衍生物非线性schrödinger方程中的动态
Soliton solutions and their dynamics in reverse-space and reverse-space-time nonlocal discrete derivative nonlinear Schrödinger equations
论文作者
论文摘要
在本文中,我们通过半discrete gerdjikov-ivanov方程的非局部对称性降低来介绍反向空间和反向时间非本地离散衍生物非线性schrödinger(DNLS)方程。两种类型的非局部离散衍生化非线性schrödinger方程的Muti-Soliton溶液是通过双线性方法和还原方法得出的。我们还研究了孤子溶液的动力学,并揭示了反向空间和反向空间非本地离散DNLS方程中丰富的孤子结构。我们的调查表明,这些非局部方程的孤子通常会呼吸并定期崩溃,以便某些孤子参数,但对于其他参数范围仍然是非影响的。
In this paper, we introduce the reverse-space and reverse-space-time nonlocal discrete derivative nonlinear Schrödinger (DNLS) equations through the nonlocal symmetry reductions of the semi-discrete Gerdjikov-Ivanov equation. The muti-soliton solutions of two types of nonlocal discrete derivative nonlinear Schrödinger equations are derived by means of the Hirota bilinear method and reduction approach. We also investigate the dynamics of soliton solutions and reveal the rich soliton structures in the reverse-space and reverse-space-time nonlocal discrete DNLS equations. Our investigation shows that the solitons of these nonlocal equations often breathe and periodically collapse for some soliton parameters, but remain nonsingular for other range of parameters.