论文标题
疤痕:侧通道分析,并在Ascon身份验证的密码上进行增强学习
SCARL: Side-Channel Analysis with Reinforcement Learning on the Ascon Authenticated Cipher
论文作者
论文摘要
现有的侧通道分析技术需要以先验知识或一组培训数据的形式进行泄漏模型,以建立秘密数据与测量结果之间的关系。我们通过强化学习(SCRAL)引入侧向通道分析(SCARL),能够在无监督的学习方法中提取测量的数据依赖性特征,而无需对泄漏模型进行先验知识。疤痕由一个自动编码器组成,将功率测量信息编码为内部表示形式,以及一种增强学习算法以提取有关秘密数据的信息。我们使用Actor-Critic网络采用强化学习算法,以确定适当的泄漏模型,从而导致自动编码器表示的最大群间分离。 Scarl假设通用非线性泄漏模型的较低阶组件对敏感数据的泄漏具有更大的贡献。在对Artix-7 FPGA上ASCON身份验证的密码的轻巧实现时,Scarl能够在密钥插入或初始化阶段在密码的密钥插入期间恢复秘密键。我们还证明,诸如DPA和CPA之类的经典技术无法使用传统的线性泄漏模型和超过40k的功率轨迹识别正确的键。
Existing side-channel analysis techniques require a leakage model, in the form of a prior knowledge or a set of training data, to establish a relationship between the secret data and the measurements. We introduce side-channel analysis with reinforcement learning (SCARL) capable of extracting data-dependent features of the measurements in an unsupervised learning approach without requiring a prior knowledge on the leakage model. SCARL consists of an auto-encoder to encode the information of power measurements into an internal representation, and a reinforcement learning algorithm to extract information about the secret data. We employ a reinforcement learning algorithm with actor-critic networks, to identify the proper leakage model that results in maximum inter-cluster separation of the auto-encoder representation. SCARL assumes that the lower order components of a generic non-linear leakage model have larger contribution to the leakage of sensitive data. On a lightweight implementation of the Ascon authenticated cipher on the Artix-7 FPGA, SCARL is able to recover the secret key using 24K power traces during the key insertion, or Initialization Stage, of the cipher. We also demonstrate that classical techniques such as DPA and CPA fail to identify the correct key using traditional linear leakage models and more than 40K power traces.