论文标题

DIFFGCN:通过差分运算符和代数多机池的图形卷积网络

DiffGCN: Graph Convolutional Networks via Differential Operators and Algebraic Multigrid Pooling

论文作者

Eliasof, Moshe, Treister, Eran

论文摘要

图形卷积网络(GCN)已显示在处理诸如点云和网格之类的无序数据方面有效。在这项工作中,我们提出了图形卷积,汇总和不冷冻的新方法,灵感来自有限差异和代数多机框架。我们基于离散的差分运算符,形成一个参数化的卷积内核,利用图形质量,梯度和拉普拉斯式。这样,参数化不取决于图形结构,仅取决于网络卷积作为差异操作员的含义。为了允许输入的层次表示,我们提出了基于代数多机方法的汇总和未解决操作,这些操作主要用于求解非结构化网格的部分微分方程。为了激励和解释我们的方法,我们将其与标准的卷积神经网络进行比较,并在常规网格的情况下显示它们的相似性和关系。我们提出的方法在各种实验(例如分类和零件分割)中得到了证明,其在PAR或比最新结果状态更好。与其他GCN相比,我们还分析了方法的计算成本。

Graph Convolutional Networks (GCNs) have shown to be effective in handling unordered data like point clouds and meshes. In this work we propose novel approaches for graph convolution, pooling and unpooling, inspired from finite differences and algebraic multigrid frameworks. We form a parameterized convolution kernel based on discretized differential operators, leveraging the graph mass, gradient and Laplacian. This way, the parameterization does not depend on the graph structure, only on the meaning of the network convolutions as differential operators. To allow hierarchical representations of the input, we propose pooling and unpooling operations that are based on algebraic multigrid methods, which are mainly used to solve partial differential equations on unstructured grids. To motivate and explain our method, we compare it to standard convolutional neural networks, and show their similarities and relations in the case of a regular grid. Our proposed method is demonstrated in various experiments like classification and part-segmentation, achieving on par or better than state of the art results. We also analyze the computational cost of our method compared to other GCNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源