论文标题

通过Gromov-Wasserstein学习的广义光谱聚类

Generalized Spectral Clustering via Gromov-Wasserstein Learning

论文作者

Chowdhury, Samir, Needham, Tom

论文摘要

我们在光谱聚类和Gromov-Wasserstein Learning(GWL)之间建立了一个桥梁,这是一种最佳的基于最佳传输的图形分配方法。该连接既解释又改进了GWL的最新性能。 Gromov-Wasserstein框架通过节点匹配问题的二次编程松弛,提供了源图和目标图之间的概率对应关系。我们的结果利用并连接了GW几何结构对任何等级-2张量的有效性,尤其是图上的邻接,距离和各种核矩阵,并且热核比产生稳定且信息性的节点通讯的邻接矩阵。在GWL框架中使用热内核提供了新的多尺度图比较,而不会损害理论保证,同时立即得出改善的经验结果。 GWL框架对图形分配的关键见解是将GW对应关系从源图计算到具有隔离,自共同节点的模板图。我们表明,在使用无限时间限制的热内核与两节点模板图进行比较时,所得分区与Fiedler Vector产生的分区一致。反过来,这通过最佳传输镜头对K-CUT图分配问题产生了新的见解。我们对一系列现实网络的实验实现了与GWL实现的最新结果相当的结果。

We establish a bridge between spectral clustering and Gromov-Wasserstein Learning (GWL), a recent optimal transport-based approach to graph partitioning. This connection both explains and improves upon the state-of-the-art performance of GWL. The Gromov-Wasserstein framework provides probabilistic correspondences between nodes of source and target graphs via a quadratic programming relaxation of the node matching problem. Our results utilize and connect the observations that the GW geometric structure remains valid for any rank-2 tensor, in particular the adjacency, distance, and various kernel matrices on graphs, and that the heat kernel outperforms the adjacency matrix in producing stable and informative node correspondences. Using the heat kernel in the GWL framework provides new multiscale graph comparisons without compromising theoretical guarantees, while immediately yielding improved empirical results. A key insight of the GWL framework toward graph partitioning was to compute GW correspondences from a source graph to a template graph with isolated, self-connected nodes. We show that when comparing against a two-node template graph using the heat kernel at the infinite time limit, the resulting partition agrees with the partition produced by the Fiedler vector. This in turn yields a new insight into the k-cut graph partitioning problem through the lens of optimal transport. Our experiments on a range of real-world networks achieve comparable results to, and in many cases outperform, the state-of-the-art achieved by GWL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源