论文标题

Vasconcelos在共素模块上的猜想

Vasconcelos' conjecture on the conormal module

论文作者

Briggs, Benjamin

论文摘要

对于任何理想的$ i $ $ i $的有限投影尺寸,在通勤的noetherian本地环$ r $中,我们证明,如果Conormal模块$ I/I^2 $具有超过$ r/i $的有限投影尺寸,则$ i $必须按常规顺序产生。这解决了Vasconcelos的猜想。我们证明了第一个$ i $的第一个Koszul同源模块的结果。当$ r $是特征零的字段$ k $上的多项式戒指的本地化时,Vasconcelos认为,如果模块$ω_ {(R/I)/k} $差异的模块具有有限的投影尺寸,则$ r/i $是减少的完整交集;我们证明了对艾森布德 - 马祖尔的猜想的这一因素。 该论点利用同义的结构以$ i $相关的代数为基本的代数。通过Avramov和Halperin的工作,如果每个程度的$ 2 $ element lie代数是激进的,则$ i $由常规序列产生。 Iyengar表明,$ i/i^2 $的免费求和产生了同型lie代数的中心元素,我们建立了一个类似的标准来构建激进元素,从中我们推断出我们的主要结果。

For any ideal $I$ of finite projective dimension in a commutative noetherian local ring $R$, we prove that if the conormal module $I/I^2$ has finite projective dimension over $R/I$, then $I$ must be generated by a regular sequence. This resolves a conjecture of Vasconcelos. We prove a similar result for the first Koszul homology module of $I$. When $R$ is a localisation of a polynomial ring over a field $K$ of characteristic zero, Vasconcelos conjectured that $R/I$ is a reduced complete intersection if the module $Ω_{(R/I)/K}$ of differentials has finite projective dimension; we prove this contingent on the Eisenbud-Mazur conjecture. The arguments exploit the structure of the homotopy Lie algebra associated to $I$ in an essential way. By work of Avramov and Halperin, if every degree $2$ element of the homotopy Lie algebra is radical, then $I$ is generated by a regular sequence. Iyengar has shown that free summands of $I/I^2$ give rise to central elements of the homotopy Lie algebra, and we establish an analogous criterion for constructing radical elements, from which we deduce our main result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源