论文标题

机器学习启用了分布式大型MIMO中的序言碰撞分辨率

Machine Learning Enabled Preamble Collision Resolution in Distributed Massive MIMO

论文作者

Ding, Jie, Qu, Daiming, Liu, Pei, Choi, Jinho

论文摘要

序言碰撞是一种瓶颈,会损害免费RA(GFRA)中随机访问(RA)用户设备(UE)的性能。在本文中,通过利用分布式大量多重输入多重输出(MMIMO)以及机器学习,提出了一种新型的基于机器学习的框架解决方案,以解决GFRA中的序言碰撞问题。关键思想是识别并采用碰撞RAU的相邻访问点(AP)进行数据解码而不是所有AP,以便可以有效地减轻相撞的RA UES之间的相互干扰。为此,我们首先设计了一个量身定制的深神经网络(DNN),以实现GFRA中的序列多重性估计,其中还提出了一种能量检测方法(ED)方法进行性能比较。然后,使用估计的序言多样性,我们提出了k-means ap聚类算法以聚集碰撞ra ues的相邻AP并组织每个AP群集以分别解释接收到的数据。仿真结果表明,拟议的DNN可以实现序言多样性估计的不错的表现,并确认提出的计划在GFRA中有效地有效地在GFRA的序言碰撞分辨率方面有效,这些方案能够以近乎可视性的绩效,以近似于每次碰撞的RAR RAR RAR RAR UE和传统效果,并提供显着的SCHEMES,并提供近乎可行的效果。

Preamble collision is a bottleneck that impairs the performance of random access (RA) user equipment (UE) in grant-free RA (GFRA). In this paper, by leveraging distributed massive multiple input multiple output (mMIMO) together with machine learning, a novel machine learning based framework solution is proposed to address the preamble collision problem in GFRA. The key idea is to identify and employ the neighboring access points (APs) of a collided RA UE for its data decoding rather than all the APs, so that the mutual interference among collided RA UEs can be effectively mitigated. To this end, we first design a tailored deep neural network (DNN) to enable the preamble multiplicity estimation in GFRA, where an energy detection (ED) method is also proposed for performance comparison. With the estimated preamble multiplicity, we then propose a K-means AP clustering algorithm to cluster the neighboring APs of collided RA UEs and organize each AP cluster to decode the received data individually. Simulation results show that a decent performance of preamble multiplicity estimation in terms of accuracy and reliability can be achieved by the proposed DNN, and confirm that the proposed schemes are effective in preamble collision resolution in GFRA, which are able to achieve a near-optimal performance in terms of uplink achievable rate per collided RA UE, and offer significant performance improvement over traditional schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源