论文标题

在$ \ mathbb {r}^d $中的对流扩散方程的混合规范上的下限

Lower bounds on mixing norms for the advection diffusion equation in $\mathbb{R}^d$

论文作者

Nobili, Camilla, Pottel, Steffen

论文摘要

使用傅立叶分割方法得出了$ \ mathbb {r}^d $ $ \ mathbb {r}^d $中的能量衰减的代数下限。通过猜想在流体中混合的猜想,通过梯度估计和插值获得了溶液反向梯度的$ l^2- $规范的下限。

An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $\mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower bound on the $L^2-$ norm of the inverse gradient of the solution is obtained via gradient estimates and interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源