论文标题

消融数据扩大施加的罚款

The Penalty Imposed by Ablated Data Augmentation

论文作者

Liu, Frederick, Najmi, Amir, Sundararajan, Mukund

论文摘要

有一组数据增强技术,可以随机消融输入的部分。这些包括输入辍学,切口和随机擦除。我们称这些技术烧蚀了数据的增强。尽管这些技术在精神上似乎相似,并且在改善各种领域的模型性能方面取得了成功,但我们尚未对这些技术之间的差异有数学理解,例如我们在L1或L2(例如L1或L2)中所做的差异。首先,我们研究了平均消融数据增强和线性回归的倒掉的形式模型。我们证明,消融数据的增强等同于优化普通最小二乘物的目标以及惩罚,我们称之为贡献协方差惩罚和倒掉的掉落,比在流行框架中的辍学更常见的实现相当于优化普通最小二乘的目标以及修改的L2。对于深层网络,如果我们用平均梯度替换贡献和系数,即贡献协方差惩罚和修改的L2罚款下降,而随着相应的各种网络中相应的消融数据增强的增加,我们将证明结果的经验版本。

There is a set of data augmentation techniques that ablate parts of the input at random. These include input dropout, cutout, and random erasing. We term these techniques ablated data augmentation. Though these techniques seems similar in spirit and have shown success in improving model performance in a variety of domains, we do not yet have a mathematical understanding of the differences between these techniques like we do for other regularization techniques like L1 or L2. First, we study a formal model of mean ablated data augmentation and inverted dropout for linear regression. We prove that ablated data augmentation is equivalent to optimizing the ordinary least squares objective along with a penalty that we call the Contribution Covariance Penalty and inverted dropout, a more common implementation than dropout in popular frameworks, is equivalent to optimizing the ordinary least squares objective along with Modified L2. For deep networks, we demonstrate an empirical version of the result if we replace contributions with attributions and coefficients with average gradients, i.e., the Contribution Covariance Penalty and Modified L2 Penalty drop with the increase of the corresponding ablated data augmentation across a variety of networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源