论文标题

三组分Schnakenberg系统中多个尖峰的复杂振荡运动

Complex oscillatory motion of multiple spikes in a three-component Schnakenberg system

论文作者

Xie, Shuangquan, kolokolnikov, Theodore, Nishiura, Yasumasa

论文摘要

在本文中,我们介绍了三个成分的Schnakenberg模型。它的关键特征是它具有由n个尖峰组成的解决方案,该峰值几乎同时同时相对于n个不同的模式进行了HOPF分叉。这会导致尖峰的复杂振荡动力学,在典型的两个组件模型中未见。对于高于HOPF分叉的参数值,我们得出了还原的运动方程,这些方程由峰位置及其速度的订单2N的普通微分方程(OD)组成。这些ODE充分描述了HOPF分叉附近的尖峰的缓慢演变。然后,我们将多个尺度的方法应用于产生的ODE,以得出长期动力学。对于单个尖峰,我们发现其长期运动由稳态附近的振荡组成,可以明确计算其振幅。对于两个尖峰,长期行为可以是相期或相位外振荡。相相轨道的内外轨道都是稳定的,对于相同的参数值共存,轨道的命运仅取决于初始条件。远离HOPF分叉点,我们提供了数值实验,表明存在高度复杂和混乱的振荡。

In this paper, we introduce a three-component Schnakenberg model. Its key feature is that it has a solution consisting of N spikes that undergoes a Hopf bifurcation with respect to N distinct modes nearly simultaneously. This results in complex oscillatory dynamics of the spikes, not seen in typical two-component models. For parameter values above the Hopf bifurcations, we derive reduced equations of motion which consist of coupled ordinary differential equations (ODEs) of order 2N for spike positions and their velocities. These ODEs fully describe the slow-time evolution of the spikes near the Hopf bifurcations. We then apply the method of multiple scales to the resulting ODEs to derive long-time dynamics. For a single spike, we find that its long-time motion consists of oscillations near the steady-state whose amplitude can be computed explicitly. For two spikes, the long-time behaviour can be either in-phase or out-of-phase oscillations. Both in and out of phase orbits are stable, coexist for the same parameter values, and the fate of orbit depends solely on the initial conditions. Further away from the Hopf bifurcation point, we offer numerical experiments indicating the existence of highly complex and chaotic oscillations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源