论文标题

解决逆诺森问题:随机纤维培养基中的气体扩散

Solving the inverse Knudsen problem: gas diffusion in random fibrous media

论文作者

Szmyt, Wojciech, Guerra-Nunez, Carlos, Dransfeld, Clemens, Utke, Ivo

论文摘要

大约一个世纪以前,诺德森通过直管和孔得出了气体扩散的开创性理论,此后发现在无数科学领域中广泛应用,并启发了从学术研究到众多工业领域的真空和相关涂料技术的发展。 Knudsen的理论可以直接应用于具有延长孔的阵列的过滤膜,但是,对于逆几何排列而言,当将固体纳米线或纤维排列到多孔的交织材料(例如在地毯或刷子中)时,它会丢失分析理论框架的衍生。在本文中,我们已经确定了在随机取向圆柱体的阵列中确定气体扩散动力学的特定几何和热力学参数,并提供了一组分析表达式,允许全面描述此类结构中的气体传输。我们通过蒙特卡洛模拟证实了分析溶液。我们指定了针对原子层沉积过程的发现,三甲基氨基分子的扩散到碳纳米管阵列中,但突出了我们的衍生物对包括气体扩散膜,复合材料,燃料细胞等其他领域的适用性。

About a century ago, Knudsen derived the groundbreaking theory of gas diffusion through straight pipes and holes, which since then found widespread application in innumerable fields of science and inspired the development of vacuum and related coating technologies, from academic research to numerous industrial sectors. Knudsen's theory can be straightforwardly applied to filter membranes with arrays of extended holes for example, however, for the inverse geometry arrangement, which arises when solid nanowires or fibers are arranged into porous interwoven material (like in carpets or brushes) the derivation of an analytical theory framework was still missing. In this paper, we have identified the specific geometric and thermodynamic parameters that determine the gas diffusion kinetics in arrays of randomly oriented cylinders and provide a set of analytical expressions allowing to comprehensively describe the gas transport in such structures. We confirmed analytical solutions by Monte Carlo simulations. We specify our findings for an atomic layer deposition process, the diffusion of trimethyaluminium molecules into a carbon nanotube array, but highlight the applicability of our derivation for other fields comprising gas diffusion membranes, composite materials, fuel cells and more.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源