论文标题

多余的高阶高斯流程用于物理模拟

Multi-Fidelity High-Order Gaussian Processes for Physical Simulation

论文作者

Wang, Zheng, Xing, Wei, Kirby, Robert, Zhe, Shandian

论文摘要

物理模拟的关键任务是在离散域上求解部分微分方程(PDE),这是昂贵的。尤其是,高保真解决方案比低保真性解决方案要贵得多。为了降低成本,我们考虑了新型高斯工艺(GP)模型,这些模型利用了不同的保真度的模拟示例来预测高维PDE解决方案输出。现有的GP方法要么不可扩展到高维输出,要么缺乏整合多保真示例的有效策略。为了解决这些问题,我们提出了多余的高阶高阶过程(MFHOGP),该过程可以捕获输出之间和忠诚度之间的复杂相关性,以增强解决方案估计,并扩展到大量输出。 MFHOGP基于一种新型的非线性核心化模型,在整个保真度中传播基础,以融合信息,并在基本权重上放置深层矩阵GP,以捕获整个保真度的(非线性)关系。为了提高推理效率和质量,我们使用碱分解来很大程度上减少模型参数,并通过层矩阵高斯后尾构成后依赖性并简化计算。我们的随机变分学习算法成功地处理了数百万个输出,而没有额外的稀疏近似值。我们在几种典型应用中显示了我们方法的优势。

The key task of physical simulation is to solve partial differential equations (PDEs) on discretized domains, which is known to be costly. In particular, high-fidelity solutions are much more expensive than low-fidelity ones. To reduce the cost, we consider novel Gaussian process (GP) models that leverage simulation examples of different fidelities to predict high-dimensional PDE solution outputs. Existing GP methods are either not scalable to high-dimensional outputs or lack effective strategies to integrate multi-fidelity examples. To address these issues, we propose Multi-Fidelity High-Order Gaussian Process (MFHoGP) that can capture complex correlations both between the outputs and between the fidelities to enhance solution estimation, and scale to large numbers of outputs. Based on a novel nonlinear coregionalization model, MFHoGP propagates bases throughout fidelities to fuse information, and places a deep matrix GP prior over the basis weights to capture the (nonlinear) relationships across the fidelities. To improve inference efficiency and quality, we use bases decomposition to largely reduce the model parameters, and layer-wise matrix Gaussian posteriors to capture the posterior dependency and to simplify the computation. Our stochastic variational learning algorithm successfully handles millions of outputs without extra sparse approximations. We show the advantages of our method in several typical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源