论文标题

随机Van der Waerden定理

Random Van der Waerden Theorem

论文作者

Zohar, Ohad

论文摘要

在本文中,我们证明了随机的van der waerden定理:对于$ q_1 \ geq q_2 \ geq \ geq \ dotsb \ geq q_r \ geq 3 \ in \ mathbb {n} $存在$ c,c> 0 $ (q_1,\ dotsc,q_r))= \ begin {case} 1&\ text {if} p \ geq c \ cdot n^{ - \ frac {q_2} {q_1(q_2-1(q_2-1)}} n^{ - \ frac {q_2} {q_1(q_2-1)}}},\ end {cases} \]扩展了Rödl和Ruciński的结果,以$ q_i = q $。 1态的证明是基于Balogh,Morris和Samotij以及Saxton和Thomason的HyperGraph容器方法。 0统计的证明是Rödl和Ruciński关于对称案例的论点的扩展。

In this paper we prove the Random Van der Waerden Theorem: For $q_1 \geq q_2 \geq \dotsb \geq q_r \geq 3 \in \mathbb{N}$ there exist $c,C >0$ such that \[ \lim_{n \to \infty} \mathbb{P}([n]_p \rightarrow (q_1,\dotsc, q_r)) = \begin{cases} 1 & \text{if } p \geq C \cdot n^{-\frac{q_2}{q_1(q_2-1)}}, 0 & \text{if } p \leq c \cdot n^{-\frac{q_2}{q_1(q_2-1)}}, \end{cases}\] extending the results of Rödl and Ruciński for the symmetric case $q_i = q$. The proof for the 1-statement is based on the Hypergraph Container Method by Balogh, Morris and Samotij and Saxton and Thomason. The proof for the 0-statement is an extension of Rödl and Ruciński's argument for the symmetric case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源