论文标题

网络动力学系统的非线性控制

Nonlinear control of networked dynamical systems

论文作者

Morrison, Megan, Kutz, J. Nathan

论文摘要

我们开发了一个原则上的数学框架,用于控制非线性的网络动力学系统。我们的方法整合了降低维度,分叉理论和新兴模型发现工具,以找到低维子空间,在这些子空间中,可以使用馈送前馈控制来操纵系统以达到所需的结果。该方法利用了以下事实:许多高维网络系统都有许多固定点,从而可以计算控制信号,这些控制信号将在任何一对固定点之间移动系统。非线性动力学(SINDY)算法的稀疏识别用于将非线性动力学系统拟合到主要低率子空间上的进化。然后,这使我们能够使用分叉理论找到恒定控制信号的集合,这些信号将为规定的结果产生所需的客观路径。具体来说,我们可以在使目标固定点成为吸引子的同时破坏给定的固定点。发现的控制信号可以轻松投射回原始的高维状态和控制空间。我们在既定的,低维的生物系统上说明了我们的非线性控制程序,显示了如何发现控制信号在固定点之间生成开关。然后,我们演示了在随机高维网络和Hopfield内存网络上的高维系统的控制过程。

We develop a principled mathematical framework for controlling nonlinear, networked dynamical systems. Our method integrates dimensionality reduction, bifurcation theory and emerging model discovery tools to find low-dimensional subspaces where feed-forward control can be used to manipulate a system to a desired outcome. The method leverages the fact that many high-dimensional networked systems have many fixed points, allowing for the computation of control signals that will move the system between any pair of fixed points. The sparse identification of nonlinear dynamics (SINDy) algorithm is used to fit a nonlinear dynamical system to the evolution on the dominant, low-rank subspace. This then allows us to use bifurcation theory to find collections of constant control signals that will produce the desired objective path for a prescribed outcome. Specifically, we can destabilize a given fixed point while making the target fixed point an attractor. The discovered control signals can be easily projected back to the original high-dimensional state and control space. We illustrate our nonlinear control procedure on established bistable, low-dimensional biological systems, showing how control signals are found that generate switches between the fixed points. We then demonstrate our control procedure for high-dimensional systems on random high-dimensional networks and Hopfield memory networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源