论文标题

遗憾的是最小化的因果推论

Regret Minimization for Causal Inference on Large Treatment Space

论文作者

Tanimoto, Akira, Sakai, Tomoya, Takenouchi, Takashi, Kashima, Hisashi

论文摘要

预测哪种行动(治疗)将导致更好的结果是决策支持系统的核心任务。为了在实际情况下构建预测模型,由于缺乏随机对照试验(RCT)数据,从偏见的观察数据中学习是一个关键问题。为了处理这种有偏见的观察数据,最新的因果推理和反事实机器学习的努力集中在对二元动作空间潜在结果及其之间的差异的估计估计,即单个治疗效果。但是,当涉及大型动作空间(例如,为患者选择适当的药物组合),但是,实际上,潜在结果的回归准确性在实际方面不足以实现良好的决策绩效。这是因为大动作空间的平均准确性并不能保证单个潜在结果误解的不存在,这可能会误导整个决定。我们提出的损失最大程度地减少了分类错误,即在所有可行的行动中,该动作是否对单个目标相对较好,这进一步改善了决策绩效,正如我们所证明的那样。我们还提出了一个网络体系结构和一个正规器,不仅从单个功能中提取了辩护表示形式,而且还从偏见的动作中提取了在大型动作空间中更好地概括的动作。关于合成和半合成数据集的广泛实验证明了我们方法对大型组合作用空间的优越性。

Predicting which action (treatment) will lead to a better outcome is a central task in decision support systems. To build a prediction model in real situations, learning from biased observational data is a critical issue due to the lack of randomized controlled trial (RCT) data. To handle such biased observational data, recent efforts in causal inference and counterfactual machine learning have focused on debiased estimation of the potential outcomes on a binary action space and the difference between them, namely, the individual treatment effect. When it comes to a large action space (e.g., selecting an appropriate combination of medicines for a patient), however, the regression accuracy of the potential outcomes is no longer sufficient in practical terms to achieve a good decision-making performance. This is because the mean accuracy on the large action space does not guarantee the nonexistence of a single potential outcome misestimation that might mislead the whole decision. Our proposed loss minimizes a classification error of whether or not the action is relatively good for the individual target among all feasible actions, which further improves the decision-making performance, as we prove. We also propose a network architecture and a regularizer that extracts a debiased representation not only from the individual feature but also from the biased action for better generalization in large action spaces. Extensive experiments on synthetic and semi-synthetic datasets demonstrate the superiority of our method for large combinatorial action spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源