论文标题

用于远期市场的电力采购的人工智能解决方案

An Artificial Intelligence Solution for Electricity Procurement in Forward Markets

论文作者

Théate, Thibaut, Mathieu, Sébastien, Ernst, Damien

论文摘要

零售商和主要电力消费者通常在远期市场上购买了未来几年的重要电力需求。这项长期电力采购任务包括确定何时购买电力,以最大程度地减少产生的能源成本,并涵盖了预测消费。在这篇科学文章中,重点是将比利时前进市场的年度基础负载产品(名为Calware(CAL))设置在可交易期间的交易期内长达三年。该研究论文介绍了一种新颖的算法,该算法提供了建议,以立即购买电力,或者根据CAL价格的历史等待未来的机会。该算法依赖于深度学习预测技术和指标,以量化与完全统一的参考采购政策的偏差。平均而言,拟议的方法超过了考虑的基准采购政策,并且在完全统一的参考采购政策方面,成本降低了1.65%,达到了平均电价。此外,除了自动化复杂的电力采购任务外,该算法在多年来还显示出更一致的结果。最终,提出的解决方案的一般性使其非常适合解决其他商品采购问题。

Retailers and major consumers of electricity generally purchase an important percentage of their estimated electricity needs years ahead in the forward market. This long-term electricity procurement task consists of determining when to buy electricity so that the resulting energy cost is minimised, and the forecast consumption is covered. In this scientific article, the focus is set on a yearly base load product from the Belgian forward market, named calendar (CAL), which is tradable up to three years ahead of the delivery period. This research paper introduces a novel algorithm providing recommendations to either buy electricity now or wait for a future opportunity based on the history of CAL prices. This algorithm relies on deep learning forecasting techniques and on an indicator quantifying the deviation from a perfectly uniform reference procurement policy. On average, the proposed approach surpasses the benchmark procurement policies considered and achieves a reduction in costs of 1.65% with respect to the perfectly uniform reference procurement policy achieving the mean electricity price. Moreover, in addition to automating the complex electricity procurement task, this algorithm demonstrates more consistent results throughout the years. Eventually, the generality of the solution presented makes it well suited for solving other commodity procurement problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源