论文标题
乘车需求预测的时空动态图形注意力网络
Spatial-Temporal Dynamic Graph Attention Networks for Ride-hailing Demand Prediction
论文作者
论文摘要
乘车需求预测是空间数据挖掘的重要任务。准确的乘车需求预测可以帮助预先分配资源,改善车辆利用率和用户体验。图形卷积网络(GCN)通常用于建模复杂的不规则非欧盟裔空间相关性。但是,现有的基于GCN的乘车需求预测方法仅为不同的邻居区域分配相同的重要性,并在提取不规则的非欧蛋黄酱空间相关性时保持固定的图形结构在整个时间轴上具有静态空间关系。在本文中,我们提出了一种新型的乘车需求预测方法,这是一种时空动态图形注意力网络(STDGAT)。基于GAT的注意机制,STDGAT提取了不同的成对相关性,以实现不同邻居区域的适应性重要性分配。此外,在stdgat中,我们设计了一种基于特定时间通勤的新型图形注意模式,以构建动态图结构,用于捕获整个时间表中动态特定时间特定的空间关系。对现实世界骑车需求数据集进行了广泛的实验,实验结果表明,我们的方法在三个评估指标RMSE,MAPE和MAE上对最先进的基线的显着改善。
Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is commonly used to model the complicated irregular non-Euclidean spatial correlations. However, existing GCN-based ride-hailing demand prediction methods only assign the same importance to different neighbor regions, and maintain a fixed graph structure with static spatial relationships throughout the timeline when extracting the irregular non-Euclidean spatial correlations. In this paper, we propose the Spatial-Temporal Dynamic Graph Attention Network (STDGAT), a novel ride-hailing demand prediction method. Based on the attention mechanism of GAT, STDGAT extracts different pair-wise correlations to achieve the adaptive importance allocation for different neighbor regions. Moreover, in STDGAT, we design a novel time-specific commuting-based graph attention mode to construct a dynamic graph structure for capturing the dynamic time-specific spatial relationships throughout the timeline. Extensive experiments are conducted on a real-world ride-hailing demand dataset, and the experimental results demonstrate the significant improvement of our method on three evaluation metrics RMSE, MAPE and MAE over state-of-the-art baselines.