论文标题

具有不精确近端运算符的一阶方法的原则分析和设计

Principled Analyses and Design of First-Order Methods with Inexact Proximal Operators

论文作者

Barré, Mathieu, Taylor, Adrien, Bach, Francis

论文摘要

近端操作是在实用和理论(或高级)优化方法中出现的最常见原始作用之一。这种基本操作通常包括解决中介(希望更简单)的优化问题。在这项工作中,我们调查了解决这些中介优化问题时可使用的不准确性的概念。然后,我们表明,可以通过基于半决赛编程的通用过程系统地获得依赖于这种不精确近端操作的算法的最坏情况保证。该方法主要基于Drori和Teboulle(2014)和凸插值结果所介绍的方法,并允许产生不可证实的最坏情况分析。换句话说,对于给定的算法,该方法同时生成了最坏情况证书(即证明)和实现这些界限的问题实例。 依靠这种方法,我们研究了几种基本方法的数值最差表现,这些方法依赖于不可过的近端操作,包括加速变体,并设计具有优化最坏情况行为的变体。我们进一步说明了如何通过研究一种简单的相对不切近的近端最小化方法来扩展强烈凸出目标的方法。

Proximal operations are among the most common primitives appearing in both practical and theoretical (or high-level) optimization methods. This basic operation typically consists in solving an intermediary (hopefully simpler) optimization problem. In this work, we survey notions of inaccuracies that can be used when solving those intermediary optimization problems. Then, we show that worst-case guarantees for algorithms relying on such inexact proximal operations can be systematically obtained through a generic procedure based on semidefinite programming. This methodology is primarily based on the approach introduced by Drori and Teboulle (2014) and on convex interpolation results, and allows producing non-improvable worst-case analyzes. In other words, for a given algorithm, the methodology generates both worst-case certificates (i.e., proofs) and problem instances on which those bounds are achieved. Relying on this methodology, we study numerical worst-case performances of a few basic methods relying on inexact proximal operations including accelerated variants, and design a variant with optimized worst-case behaviour. We further illustrate how to extend the approach to support strongly convex objectives by studying a simple relatively inexact proximal minimization method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源