论文标题
从概率的角度来看的逃逸率和有条件的逃逸率
Escape rate and conditional escape rate from a probabilistic point of view
论文作者
论文摘要
我们证明,对于一系列嵌套集,$ \ {u_n \} $带有$λ= \ cap_n u_n $ a量度零集,只要动态系统以$ ϕ $以多态度的速度,本地化的逃生速率会收敛到$λ$的极值指数。我们还确定了进入时间的本地逃生率与回报的本地逃生率之间的一般等效性。
We prove that for a sequence of nested sets $\{U_n\}$ with $Λ= \cap_n U_n$ a measure zero set, the localized escape rate converges to the extremal index of $Λ$, provided that the dynamical system is $ϕ$-mixing at polynomial speed. We also establish the general equivalence between the local escape rate for entry times and the local escape rate for returns.