论文标题
快速连贯的点漂移
Fast Coherent Point Drift
论文作者
论文摘要
非辅助点集注册被广泛应用于计算机视觉和模式识别的任务。连贯的点漂移(CPD)是一种非矛盾点集注册的经典方法。但是,为了求解空间变换函数,CPD必须通过时间复杂性O(M3)来计算M*M矩阵的反转。通过引入简单的相应约束,我们开发了CPD的快速实现。我们方法的最优点是避免矩阵内操作。在迭代开始之前,我们的方法需要一次对M*M矩阵进行特征值分解。迭代开始后,我们的方法只需要更新具有线性计算复杂性的对角线矩阵,并在每次迭代中大约O(m2)执行矩阵乘法操作。此外,低级矩阵近似可以进一步加速我们的方法。 3D点云数据中的实验结果表明,我们的方法可以显着减少注册过程的计算负担,并在准确性上保持可比性的性能。
Nonrigid point set registration is widely applied in the tasks of computer vision and pattern recognition. Coherent point drift (CPD) is a classical method for nonrigid point set registration. However, to solve spatial transformation functions, CPD has to compute inversion of a M*M matrix per iteration with time complexity O(M3). By introducing a simple corresponding constraint, we develop a fast implementation of CPD. The most advantage of our method is to avoid matrix-inverse operation. Before the iteration begins, our method requires to take eigenvalue decomposition of a M*M matrix once. After iteration begins, our method only needs to update a diagonal matrix with linear computational complexity, and perform matrix multiplication operation with time complexity approximately O(M2) in each iteration. Besides, our method can be further accelerated by the low-rank matrix approximation. Experimental results in 3D point cloud data show that our method can significantly reduce computation burden of the registration process, and keep comparable performance with CPD on accuracy.