论文标题
在薄薄的海洋中的波浪中的波浪
Waves in Thin Oceans on Oblate Neutron Stars
论文作者
论文摘要
在各种恒星和行星问题中,薄流体层中的波很重要。由于迅速的旋转,这种系统将变得植入,并且对物体表面的重力加速有纬度变化。在积聚中子恒星的情况下,快速旋转可能导致比赤道半径小的极性半径$ \ sim 0.8 $。我们研究了通过分析近似和数值计算在此类流体层中影响的不同流体动力模式的含性和不断变化的引力加速度。与球形对应物相比,$ g $ - 摩德和Yanai模式的波矢量增加了,尽管变化在变化的重力加速度上的影响实际上可以忽略不计。我们发现,为了增加无剂,开尔文模式显示出赤道限制较少,波动矢量的变化很小。对于$ r $ - modes,我们发现,对于更多的植入系统,波矢量会减少。这些变化的确切方式取决于整个表面的重力加速度的模型。
Waves in thin fluid layers are important in various stellar and planetary problems. Due to rapid rotation such systems will become oblate, with a latitudinal variation in the gravitational acceleration across the surface of the object. In the case of accreting neutron stars, rapid rotation could lead to a polar radius smaller than the equatorial radius by a factor $\sim 0.8$. We investigate how the oblateness and a changing gravitational acceleration affect different hydrodynamic modes that exist in such fluid layers through analytic approximations and numerical calculations. The wave vectors of $g$-modes and Yanai modes increase for more oblate systems compared to spherical counterparts, although the impact of variations in the changing gravitational acceleration is effectively negligible. We find that for increased oblateness, Kelvin modes show less equatorial confinement and little change in their wave vector. For $r$-modes, we find that for more oblate systems the wave vector decreases. The exact manner of these changes for the $r$-modes depends on the model for the gravitational acceleration across the surface.